Quest for the "God Particle"
National Geographic Article on the Large Hadron Collider
We know things today that Einstein, Rutherford, Max Planck, Niels Bohr, Werner Heisenberg, and the rest of the great physicists of a century ago couldn't have imagined. But we're nowhere near a final theory of physical reality. Molecules are made of atoms; atoms are made of particles called protons, neutrons, and electrons; protons and neutrons (which are the "hadrons" that give the Hadron collider its name) are made of odd things called quarks and gluons—but already we're into a fuzzy zone. Are quarks fundamental particles, or made of something smaller yet?
The standard model can't explain several towering mysteries about the universe that have their roots in the minuscule world of particles and forces. If there's one truly extraordinary concept to emerge from the past century of inquiry, it's that the cosmos we see was once smaller than an atom. This is why particle physicists talk about cosmology and cosmologists talk about particle physics: Our existence, our entire universe, emerged from things that happened at the smallest imaginable scale. The big bang theory tells us that the known universe once had no dimensions at all—no up or down, no left or right, no passage of time, and laws of physics beyond our vision.
How does an infinitely dense universe become a vast and spacious one? And how is it filled with matter?
What about the riddle of dark matter? Scrutiny of the motion of distant galaxies indicates that they are subject to more gravity than their visible matter could possibly account for. There must be some exotic hidden matter in the mix. A theory called supersymmetry could account for this: It states that every fundamental particle had a much more massive counterpart in the early universe. The electron might have had a hefty partner that physicists refer to as the selectron. The muon might have had the smuon. The quark might have had ... the squark. Many of those supersymmetric partners would have been unstable, but one kind may have been just stable enough to survive since the dawn of time. And those particles might, at this very second, be streaming through your body without interacting with your meat and bones. They might be dark matter.
By smashing pieces of matter together, creating energies and temperatures not seen since the universe's earliest moments, the LHC could reveal the particles and forces that wrote the rules for everything that followed. It could help answer one of the most basic questions for any sentient being in our universe: What is this place?
There's one puzzle piece in particular that physicists hope to pick out of the debris from the LHC's high-energy collisions. Some call it the God particle.
The first thing you learn when you ask scientists about the God particle is that it's bad form to call it that. The particle was named a few years back by Nobel Prize-winning physicist Leon Lederman, who has a knack for turning a phrase. Naturally the moniker took root among journalists, who know a good name for a particle when they hear one (it beats the heck out of the muon or the Z-boson).
The preferred name for the God particle among physicists is the Higgs boson, or the Higgs particle, or simply the Higgs, in honor of the University of Edinburgh physicist Peter Higgs, who proposed its existence more than 40 years ago. Most physicists believe that there must be a Higgs field that pervades all space; the Higgs particle would be the carrier of the field and would interact with other particles, sort of the way a Jedi knight in Star Wars is the carrier of the "force." The Higgs is a crucial part of the standard model of particle physics—but no one's ever found it.
1 comments:
"It could help answer one of the most basic questions for any sentient being in our universe: What is this place?"
"The first thing you learn when you ask scientists about the God particle is that it's bad form to call it that."
The ultimate truth of life and existence cannot be found through quantum physics and related fields.
If the deepest layer in life/existence consists of sub-atomic particles and electromagnetism and nothing more, what is the difference between a human being and a machine?
Because in this case BOTH have the SAME deepest level - that which consists of subatomic particles and electromagentism, nuclear forces etc.
Post a Comment